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The model problem of induction into motion of a sphere located in a conductive liquid by 
the electromagnetic field induced in that liquid by a magnetic dipole m -- m0e i~t offset rela- 
tive to the center of the sphere was considered in [i]. The analysis was carried out in the 
Stokes approximation, with the study of the effect upon the liquid limited to only that por- 
tion of the force field responsible for setting the sphere in motion, namely 

t =%-~e-~- e-~(~-a)/~sin2~ cos6 e~. (1) 

Here ~ = d/a; d is the distance of the dipole m from the center of the sphere; a is the sphere 

radius; 6 = ~ is the skin layer thickness; a is the liquid conductivity; H 0 = m0/a 3 is 
the characteristic magnetic field intensity; we use a spherical coordinate system (r, ~, ~). 

Direct solution (a technically cumbersome task) of the StoLes equation will yield the 
velocity of sphere motion 

U~ ~ Ska ) 8h-~" (2) 

The present study will obtain a more general relationship for determining the velocity 
of a body set in motion by volume electromagnetic forces distributed outside the body. 

The relationships obtained are valid under the following conditions: i) Reynolds number 
Re ~ i (Stokes flow); 2) volume force distribution independent of velocity field, which upon 
satisfaction of Eq. (i) is possible if E 0 ~ UoH0/c (E0, H 0 being the characteristic electric 
and magnetic field intensities, U0, the characteristic flow velocity). 

The system of equations describing steady state motion of the liquid in a coordinate 
system fixed to the body has the form 

(uv)u + (t/p)vp = (t/p)f + vAu, div u = 0. (3) 

On the body surface the adhesion condition 

uls = 0 ( 4 )  

must be satisfied. On a surface infinitely removed from the body one usually specifies the 
incident flow velocity uhrl~ - U~ (where U~ is the velocity vector of the body motion). 
However in our case the value of U~ is unknown and is defined by the condition of equality 
to zero of the net force acting on the body in steady state motion in the viscous liquid: 

fd3r= r(u)nds (5) 
O S 

Here G is the region occupied by the liquid; S is the surface of the body flowed over; n is 
the external normal to the surface S; T(~ is the stress tensor Tu( ~ .... p6 U + ~(O~jOxj ~ Oei/ 
~xi). 

In the Stokes approximation Eq. (3) can be written as 

div T(u) + [ = 0. (6) 

Integrating Eq. (6) over the volume G occupied by the liquid, and employing the Ostrogradskii- 
Gauss formula, we obtain 

- -  ~ T (u) n dS + S T (u) n dS + y f dar = O (7) 
S E R O 
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(E R is an arbitrary surface removed from the body). Comparing Eqs. (5) and (7), we find 

[ T(u)ndS = O. (8) 
zR 

In the case of conventional Stokes flow, where volume forces are absent (f ~ 0), from Eq. (7) 
we find 

T(v)ndS = ] T(vlndS. (9 )  
ZR S 

We now use Green's formula 

I v (gAu --  Vp) dar - -  [ u (~Av --  Vq) d3r = ~ {vT (u) n --  u r  (v) n} dS, (10)  

where u, v are arbitrary smooth solenoidal vectors; p, q are arbitrary smooth functions; 
T(u), T(v) are stress tensors corresponding to the fields (u, p)and (v, q). 

We choose as u, p the solution of the problem of motion of the solid under consideration 
under the action of electromagnetic forces [the problem of Eqs. (6), (4), (5)], and as v, q, 
the solution of the conventional Stokes problem of flow over the same body. Then with con- 
sideration of Eq. (6) and boundary conditions (4) we write Eq. (I0) in the form 

- -~  v[d3r = ~ vT(u)ndS-- ~ uT(v)ndS. (ii) 
G Z R Z R 

As Ir l  ~ o o  let 

u--+ (U~, O, 0), v - ~  (V~, O, 0). 

Then on the surface Z R enclosing the body we have 

Letting R + ~, 
obtain 

�9 (.) n dS = V= (.) nj dS + .[ 0 - -  V| r (u) ds.  
E R ZR ZR 

~'R ~'R ~a 

in light of Eqs. (8), (9), (12) and the 

(12) 

arbitrary nature of the surface we 

S v r ( W n d s = 0 ,  ur(v).dS=U=yr j(.), jdS. (13)  
E R ~  ~ E R ~  ~ S 

From Eqs. (ii) and (13) we find the flow velocity at infinity in the case of motion of the 
solid body under the action of electromagnetic forces 

U~ = ! vfdar Tx~(v)njdS. (14)  

E q u a t i o n  ( l h )  s o l v e s  t h e  p rob lem p o s e d .  We w i l l  a p p l y  Eq. (14)  t o  t h e  s p e c i a l  c a s e  of  mot ion  
of a sphere under the action of an electromagnetic force f [Eq. (I)]: 

L[ T~(v)njdS = 6~pvV~a, 
s (15) 

Vr = / ~ C O S ~  1 2 7 + 2 Jr)]'  V~ = - - V ~ s i n 9  4 r 4 kr] J" 

For conventional Stokes flow Eq. (15) can be found, for example, in [2]. Substituting Eqs. 
(i), and (15) in Eq. (14), we obtain the sphere velocity U~, defined by Eq. (2). 

In conclusion the author expresses his gratitude to V. I. Yakovlev for evaluating the 
study and helpful remarks. 
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